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Abstract

With the development of genomic techniques, the demand for new methods that can handle high-

throughput genome-wide data effectively is becoming stronger than ever before. Compressed

sensing (CS) is an emerging approach in statistics and signal processing. With the CS theory, a

signal can be uniquely reconstructed or approximated from its sparse representations, which can

therefore better distinguish different types of signals. However, the application of CS approach to

genome-wide data analysis has been rarely investigated. We propose a novel CS-based approach

for genomic data classification and test its performance in the subtyping of leukemia through gene

expression analysis. The detection of subtypes of cancers such as leukemia according to different

genetic markups is significant, which holds promise for the individualization of therapies and

improvement of treatments. In our work, four statistical features were employed to select

significant genes for the classification. With our selected genes out of 7,129 ones, the proposed CS

method achieved a classification accuracy of 97.4% when evaluated with the cross validation and

94.3% when evaluated with another independent data set. The robustness of the method to noise

was also tested, giving good performance. Therefore, this work demonstrates that the CS method

can effectively detect subtypes of leukemia, implying improved accuracy of diagnosis of

leukemia.
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1. Introduction

Recently, tons of genome-wide data have been generated and the quantity of the data is still

increasing dramatically. A common property of genome-wide data is the high dimension,

with thousands to millions of measurements (e.g. genes, probes). Most of the traditional

classification methods become inapplicable or perform poorly in the subtyping of cancers

from genome-wide data.1 In this paper, we propose a novel compressed sensing (CS) based

classification approach to solve the problem.
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Compressed sensing, also called compressive sampling, has been developed recently in

statistics and signal processing and becomes a powerful tool in many applications. CS

theory goes against the traditional Shannon’s celebrated theorem: the sample rate should be

at least twice the maximum signal frequency (Nyquist rate). It demonstrates that the

compressible signals can be recovered from far fewer samples than that needed by the

Nyquist sampling theorem.2 Recently, CS has been successfully used in multiple disciplines

such as medical imaging,3 computational biology,4 geophysical data analysis,5 and radar

technology.6 Moreover, CS method has been claimed to be applicable in solving signal

classification problems.7,8 However, the application of CS theory to genome-wide data

analysis has been limited. For example, Kim et al. classified multiple cancer types by using

multiclass sparse logistic regression from gene expression data and they achieved high

prediction accuracy.1 They named the method as sparse one-against-all logistic (SOVAL).

We recently used the CS method to classify chromosomes from multicolor fluorescence in

situ hybridization (M-FISH) images,9 and to integrate gene copy number and gene

expression data for identifying gene groups susceptible to cancers.10 In these studies, we

demonstrated the advantages of the CS methods in compact representation of genomic data,

resulting in higher classification accuracies.

In this work, we develop a CS-based classifier and further apply it to subtyping of leukemia

based on gene expression analysis. Leukemia, like other cancers, associates with genetic

disorders. Leukemia has four main categories: acute lymphoblastic leukemia (ALL), acute

myelogenous leukemia (AML), chronic lymphocytic leukemia (CLL), and chronic

myelogenous leukemia (CML) (http://www.webmd.com/cancer/tc/leukemia-topic-

overview). It is desirable that different categories have individualized treatments and

therapies.11 Thus, it is significant to identify the subtypes of leukemia so that these subtypes

can be targeted with different drugs or treatments. Microarray-based gene expression

profiling offers an opportunity for quantitative analysis of leukemia.12 Mills et al. built a

diagnostic classification model based on gene expression profiles to distinguish three

groups: AML, MDS (myelodysplastic syndrome) and none-of-the-targets (neither leukemia

nor MDS).13 Yeoh et al. analyzed the pattern of genes expressed in leukemic blasts from

ALL patients to investigate whether gene expression profiling could enhance risk

assignment of treatments.14 Zhang and Ke classified ALL and AML by gene expression data

using support vector machine e.g. SVM and CSVM approaches.15 The testing error rate of

the classification was 2 out of 34 samples. Sun et al. developed a rough sets–based method

to classify subtypes of leukemia from gene expression data.16 The rate of the

misclassification was 3 out of 38 samples. Leukemia can also be studied with gene copy

number analysis.17 A comparison of different classification approaches for gene expression

analysis can be found in the work of Dudoit et al.18

The goal of this work is to develop CS-based classification approach and apply it to

distinguish two subtypes of leukemia: ALL and AML, from gene expression data. To test

the performance of our proposed CS-based classification method, we applied it to the

analysis of a famous leukemia dataset used by many studies.11 When the tests were

performed on the same datasets, the proposed CS-based method shows potential advantages

over existing ones such as the weighted vote,11 SVM,15 sparse logistic regression method,1
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and rough sets method,16 demonstrating improved classification rates with fewer

informative genes. The classification accuracy of the CS detector is 97.4% when validated

with the leave one out (LOO) method, and is 94.3% when tested using independent data,

where one set of 38 patients (27 ALL, 11 AML) was used as training data while another

dataset of 35 patients (21 ALL and 14 AML) was used as independent testing data.

2. Methods

2.1. Data collection

The leukemia dataset we used in this study was obtained from a public database available

from the website of Gene Pattern in Broad Institute (http://www.broadinstitute.org/cancer/

software/genepattern/datasets/). The training data have 38 bone marrow samples (27 ALL

and 11 AML) and the testing data have 35 bone marrow samples (21 ALL and 14 AML).

The number of total genes for the expression data is 7,129. A quantitative expression level

was obtained for each gene.11

2.2. Feature design

To distinguish the two groups (e.g. AML and ALL), it is helpful to extract significant genes,

also called informative genes or marker genes, from the overall 7,129 gene expression data.

For each gene, we extracted four feature characteristics: the standard deviation of each

group (Std1 and Std2), the absolute value of the mean difference of the two groups (MD),

and the Pearson’s linear correlation coefficient (Corr) between the expression samples and a

class distinction vector cd = [1, …, 0, …]; cd is a vector that consists ‘1’s in one class (ALL)

and ‘0’s in the other class (AML), respectively. Thus for the ith gene, we have a four-

dimensional feature vector as follows:

(1)

where i = 1, 2, …, N, and N is the number of genes. Each feature is normalized by its overall

maximum value so that each element of Vi ∈ [0, 1]. Informative genes were selected by

setting the threshold values of Vi, yielding M ≪ N selected genes. For an informative gene,

we expect the expression levels from different patients within the same subtype to be

similar. We also expect that the differences between the expression levels from two subtypes

of leukemia are relatively high. In addition, it is easy to understand that, if the correlation

between the expression values of a gene with the class distinction vector cd is higher; the

gene is more likely to be a significant marker to distinguish the two subtypes of leukemia.

According to the above analysis, those genes with low standard deviations within each

group, high mean differences between the groups and high Pearson’s correlations are

significant for the classification. Based on this analysis, we selected different numbers of

genes out of 7,129 genes by setting different thresholds in the significance testing of these

features, which lead to different classification accuracies, as shown in Table 1.

2.3. Compressed sensing based classification

2.3.1. Training of the transformation matrixΦ—To compress the original data by

using a few informative genes, we design a transformation matrix Φ. The training of
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transformation matrix can be formulated as a sparse representation problem as shown in Eq.

(2),

(2)

where Y = {yi} ∈ ℝM×c are the gene expressions of selected genes for the total samples/

patients; yi is the gene expressions of selected genes for the ith sample; c is the total number

of samples; S = {si} ∈ ℝN×c are the gene expressions of all the genes for the total samples/

patients, and M ≪ N. The matrix Φ ∈ ℝM×N is a sparse transformation matrix. With most of

the entries are ‘0’s, the transformation matrix Φ projects the original signal S to a much

smaller dimensional signal Y. Through this projection, the original gene expression data can

be significantly reduced or compactly represented by the informative genes, which can lead

to improved classification subsequently. The training of Φ through data S and selected data

Y is given in the following.

Assume there are c1 number of training samples in group 1, c2 number of training samples

in group 2, and so forth, cn number of training samples in group n, and c = c1 + c2 + ⋯ + cn

for S = [s1, s2, …, sc] ∈ ℝN×c and Y = [y1, y2, …, yc] ∈ ℝM×c.

The transpose of Eq. (2) gives:

(3)

Let (ΦT)j ∈ ℝN×1 denotes the jth column of ΦT, and (YT)j ∈ ℝc×1 denotes the jth column of

YT, where j = 1, 2, …, M. Then Eq. (3) can be rewritten as:

(4)

where ST ∈ ℝc×N. The linear system given by (4) is an underdetermined system, which can

be solved by using l−1 norm minimization algorithm such as Homotopy method, or the

Least Angle Regression (LARS) method.19 The l−1 norm optimization problem reads:

(5)

where ‖(ΦT)j‖1 is the l−1 norm of the vector (ΦT)j, i.e. sum of the absolute values of entries

in vector (ΦT)j.

It can be seen that by introducing the sparse transformation matrix Φ, we project the original

signal si ∈ ℝN×1 to a much smaller dimensional signal Φsi ∈ ℝM×1. In the following

process, instead of dealing with the original signal, we only use Φsi ∈ ℝM×1 and ΦΦT ∈

ℝM×M in the construction of the compressive detector t̃, leading to a fast classification.

2.3.2. Classification—Equation (2) can be rewritten in a vector form as:

(6)
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where ni ~  (0, σ2IN) is i.i.d. Gaussian noise in the observation signal. To test whether a

given vector yi ∈ ℝM belongs to a known signal si ∈ ℝN or not, we set the hypothesis as

follows20:

(7)

From (7), we have yi ~  (0, σ2ΦΦT) under H̃0, yi ~  (Φsi, σ2ΦΦT) under H̃1, which gives

the probability density functions:

(8)

and

(9)

Thus, the likelihood ratio test is: if , yi is under H̃0; otherwise, yi is under H̃1. The

likelihood ratio test can be simplified by taking a logarithm and the compressive

classification detector t̃ can be derived as following:

(10)

where t̃ = {t̃i} ∈ ℝc, S = {si} ∈ ℝN×c, i = 1, 2, …, c.

It has been proven by Davenport et al.20 that under the condition of H̃0:

(11)

while under the condition of H̃1

(12)

We then calculate the differences of the standard score of t̃i(dsti) under the two conditions:

(13)

where

We assign a class ID label to the vector yi:
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(14)

If Identity(yi) falls from 1 to c1, yi belongs to class 1; if Identity(yi) falls from c1 + 1 to c2, yi

belongs to class 2.

2.4. Validation

2.4.1. Cross-validation with leave-one-out method—A cross-validation method,

Leave-One-Out (LOO),21 is widely used in evaluating the detection accuracy of different

classes. It was employed here to evaluate the performances of the proposed CS-based

classification approach. A single bone marrow sample from the original 38 samples/patients

was taken as the validation data, while the remaining 37 samples/patients were taken as the

training data. This procedure was repeated 38 times until every sample in the database was

used once as the validation data.

2.4.2. Validation with independent data—To overcome potential biases introduced by

LOO method, an independent data set containing 35 bone marrow samples (21 ALL and 14

AML) has been used as testing data. The compressive detector was trained by another set of

38 patients (27 ALL, 11 AML), which was used as the classifier.

2.5. Robustness to noise

To test the robustness of the proposed CS method, we simulated Gaussian noise n in Eq. (6)

with different levels. The degree of signal to noise level is expressed by the signal-to-noise

ratio (SNR), which is an important metric to quantify how much a signal has been

contaminated by noise. SNR is defined as:

(15)

where Var(s) is the variance of the signal and Var(n) is the variance of the noise. In this

work, the classification accuracy ratio with/without noise under different SNR levels is used

to evaluate the robustness of the method to noise.

3. Results

To test the effectiveness of our proposed CS classification approach, we took the

classification of the two subtypes of leukemia (ALL and AML) as an example. Informative

genes with different numbers were chosen from 7,129 genes based on four statistical

features with different levels, as presented in Table 1. The performance of the classification

was evaluated by both the LOO cross-validation and the independent dataset testing. The

validation results are also listed in Table 1. The accuracy of LOO cross-validation test is

high (94.7% to 97.4%). The independent data set testing has lower classification accuracy

(80.0% to 94.3%) compared with LOO validation. Note that the classification accuracy does

not always improve with the increase of informative genes.
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Table 2 shows the top six informative genes with the lowest standard deviations (Std1, Std2),

the highest mean difference (MD) and highest Pearson’s linear correlation (Corr). The most

significant gene in classifying ALL and AML is marked as X95735, called “Zyxin.” The top

six informative genes are: “Zyxin,” “Adipsin,” “MCL1,” “Cystatin C,” “Lectin,” and “p62.”

The accuracies of the classification based on the proposed CS method are compared with the

results of the previous work on the same datasets,1,11,15,16 as shown in Table 3. Note that the

proposed CS classification approach achieves higher classification accuracy with only two

informative genes i.e. 97.4% validated by the cross-validation and 94.3% validated by an

independent dataset. These are higher than all other classifiers, except the SVM approach by

Zhang and Ke.15 However, the SVM approach used 6,817 genes to achieve a classification

rate of 100% while our method used a few genes.

Figure 1 shows the genes for the training dataset (38 bone marrow samples) when the top 1

(a), the sets of the top 2 (b), top 3 (c), and top 6 (d) informative genes are chosen for the

compressive detector. Each row represents a gene and each column represents a bone

marrow sample of 38 samples (27 samples of ALL and 11 samples of AML). Colors

represent levels of expression data. The gene expression data have been normalized by the

largest value of sample in each row, respectively. The bone marrow samples that were

misclassified by the compressive detector are marked by arrows. One of the misclassified

sample, the 29th bone marrow sample in the AML group (as shown in Fig. 1), was claimed

to be abnormal by Golub et al.11

Figure 2 shows the classification accuracy for different numbers of informative genes with

both the LOO validation and independent data validation. For the LOO validation, the

accuracy using the top informative gene and the combination of the top two is as high as

97.4%. When we increased the numbers of informative genes to 3, 6, and 16, the detection

accuracy dropped down to 94.7% for the top 3 and 6 genes; and went up to 97.4% (top 16

genes). If we continued to increase the number of informative genes e.g. the number of

genes increased to 53, the accuracy decreased dramatically to 86.8% (as shown in Fig. 2)

with the LOO cross-validation. This might be due to the redundancy of gene expressions;

the use of fewer significant genes is more effective for subtyping. The classification

accuracies evaluated by independent testing data change with the number of selected genes

as shown in Fig. 2. From these tests, we can conclude that the use of fewer but significant

genes will result in better classification accuracy.

Figure 3 displays the genes for the testing data set when the top 1, 2, 3, and 6 informative

genes were chosen, respectively. The bone marrow samples that were misclassified by the

compressive detector are marked by arrows. With the independent data validation, the

classification accuracy for the top gene was 88.6%. When we increased the numbers of

informative genes to top 2, 3, 6, 16, 20, and 53, (as shown in Fig. 2), the detection accuracy

went up to 94.3% for the top 2 and 3 genes; and dropped back to 91.4% (top 6 genes), then

dropped again to 80.0% (top 16 genes). The classification accuracy went up again when the

number of informative genes increased to 20 (85.7%) and 53 (88.6%). The use of the

combination of top 2 and 3 genes gave the highest accuracy 94.3% (Fig. 2).
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The results of cross-validation indicate that all the bone marrow samples of ALL are

classified correctly and the misclassified subjects are in the group AML (Fig. 1). It can be

observed that the samples that were misclassified have low values of gene expression. This

classification error might be caused by the noise or improper measurement of gene

expression levels.

We also tested the robustness of the CS detector to noise. The Gaussian noise n in Eq. (6)

was used to simulate noise with different levels and was added to gene expression data.

Figure 4 shows the ratio between classification accuracies with and without noise under

different SNR levels. The simulation result showed that the classification rate improves with

increased SNR. Moreover, the CS method maintains a high accuracy ratio when SNR > 10

dB, indicating that the method has a strong resistance to noise.

4. Conclusions and Discussions

In this work, a CS-based classification method was developed, which was proven to be

effective in the subtyping of leukemia with gene expression data. The proposed CS

classification method allows one to employ a very small subset of genes and their expression

data to identify the correct class. The proposed method has better accuracy in subtyping of

leukemia than several traditional classification methods that we have compared. It also helps

to reduce computational complexity and memory storage when processing large datasets.

By using the LOO validation method, we found that the detection of ALL group has an

accuracy of 100%. The misclassification only occurs in the AML group, which might be due

to the sample size difference. We have 27 ALL subjects and 11 AML subjects in the original

training dataset. If we increase the sample size of AML, the misclassification rate in the

AML group is expected to be decreased. It is interesting to note that the 29th bone marrow

sample is always misclassified (Fig. 1). Visually, the 29th sample is very similar to ALL

samples in the sense that all the genes in this sample have low gene expression values. Thus

it is reasonable that the detector assigned this sample to ALL. It was stated that this sample

was obtained from a different laboratory following a different sample preparation

protocol.11 This might be the cause that the 29th bone marrow sample was always

misclassified.

The more genes we select for the detector, the more information we feed to the detector.

However, experiments showed that choosing too many genes does not necessarily yield

better classification, which indicates that the selection of a suitable number of informative

genes is more significant. The selection of informative genes for the classification of

leukemia was performed by evaluating the four statistical features.

Although a few works have been published on the classification problem of ALL and

AML,1,11,15,16 the proposed CS-based classification approach demonstrates more

advantages in our evaluations. It is also a notable finding that using only one gene “Zyxin”

can well classify ALL and AML (e.g. with a high accuracy of 97.4% evaluated by LOO

method and 88.6% evaluated by independent validation). It indicates the importance of gene

“Zyxin” for differentiating ALL and AML. This finding was actually validated by a
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biological research.22 In our work, the number of genes needed to distinguish the two

subtypes has been significantly decreased compared to those in Golub et al.11 (at least 10

genes), Zhang and Ke15 (all genes used), and Kim et al.1 (33 genes used). Nevertheless, to

further verify the robustness of the genes we selected (as shown in Table 1) for

differentiating ALL and AML, we need more data samples, which will be our future work.

In our current work, we have shown that the CS classifier could classify two subtypes of

leukemia efficiently. It is obvious to see that the CS classifier developed in this work can be

easily extended for multiple-class detection problems, which are under our current research.
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Fig. 1.
Display of informative genes selected in feature design for the training dataset. We choose

the 1, 2, 3, and 6 genes. Each row represents a gene and each column represents a bone

marrow sample. Gene expression data is normalized by the largest value in each gene,

respectively. The bone marrow samples with arrows have been misclassified by the

compressive detector.
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Fig. 2.
The classification accuracy of ALL and AML for different numbers of informative genes.

Note that the solid line represents the result of the Leave-One-Out (LOO) validation while

the dash line represents the result of independent validation.
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Fig. 3.
Display of genes distinguishing ALL from AML for the testing dataset. We choose the 1, 2,

3, and 6 genes. Each row represents a gene and each column represents a bone marrow

sample. Gene expression data is normalized by the largest value in each gene, respectively.

The bone marrow samples with arrows indicate those misclassified by the compressive

detector.
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Fig. 4.
The ratio of the classification accuracies with and without noise under different SNR levels.
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Table 1

By choosing different feature vectors, informative genes of different numbers were picked out, which lead to

different detection accuracies.

Number of genes LOO accuracy (%) Independent testing accuracy (%)

1 97.4 88.6

2 97.4 94.3

3 94.7 94.3

6 94.7 91.4

16 97.4 80.0

Note: The accuracy was evaluated by the LOO cross-validation and independent data testing, respectively.
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Table 2

The first six significant genes are listed, which are selected with the lowest standard deviations, the highest

mean difference and Pearson’s linear correlation.

Gene ID Gene annotation

X95735 Zyxin

M84526 Adipsin

L08246 MCL1

M27891 Cystatin C

M57710 Lectin

U46751 p62a

Note:

a
Phosphotyrosine independent ligand p62 for the Lck SH2 domain mRNA.
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Table 3

The comparison of the classification accuracy to the previous four approaches.1,11,15,16

Cross-validation Independent validation Number of genes used

Our proposed CS method 97.4% 94.3% 2

Weighted vote11 94.7% 85.3% 10~200

SVM15 100.00% 94.1% 6817

Rough sets16 N/A 92.1% 1

SOVAL1 95.9% N/A 33
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